为广大币圈朋友提供币圈基础入门专业知识!
当前位置首页 > 股票基础> 正文

股票高等数学基础知识(高等数学需要哪些基础知识)

发布时间:2022-01-09-20:48:29 来源:卫信股票网 股票基础

高等数学学哪些内容。

高等数学包含的内容非常广:导数、微积分,概率论,线性代数等等都是高等数学的内容。

主要看你参加的是什么考试,什么专业。主要是学两个极限:两个无穷小比的极限和无穷多个无穷小和的极限。1. 2005年数学考试大纲的修订说明与评述

(1) 基于工学、经济学、管理学门类各学科专业对硕士研究生入学所应具备的数学知识和能力的不同要求,数学统考试卷仍分为数学一、数学二、数学三和数学四。

(2) 数学一、二试卷高等数学部分,“函数、极限、连续”的考试要求的第4条增加“了解初等函数的概念”的要求。

原为“掌握基本初等函数的性质及其图形”。变为“掌握基本初等函数的性质及其图形,了解初等函数的概念”。

评述:进一步强调基础知识点。

数学一试卷高等数学部分,“多元函数微分学”的考试要求的第6条,数学二试卷高等数学部分,“多元函数微积分学”的考试要求的第3条,将原来的“会用隐函数的求志法则”改为“了解隐函数存在定理,会求多元隐函数的偏导数”。

评述:进一步强调基础知识点与概念理解的重要性。

(4) 数学三、四试卷高等数学部分,“函数、极限、连续”的考试要求的第3条,将“理解反函数、隐函数的概念”改为“了解反函数、隐函数的概念”,

原为“理解复合函数、反函数、隐函数和分段函数的概念”。变为“理解复合函数及分段函数的概念,了解反函数及隐函数的概念”。

评述:进一步强调基础知识点。

“一元函数微分学”的考试要求的第1条,增加“会求平面曲线的切线方程和法线方程”的要求。

原为“理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念)”。

变为“理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程。”

评述:进一步强调基础知识点,进一步提升对考生能力的要求。

数学三、四试卷线性代数部分,“线性方程组”的考试要求的第4条改为“4.理解非齐次线性方程组解的结构及通解的概念。5.掌握用初等行变换求解线性方程组的方法”。

原为“4.掌握理解非齐次线性方程组基础解系的求法,会用其特解及相应的导出组的基础解系表示非齐次线性方程组的通解”。变为以上的两条。

评述:进一步提升对考生能力的要求。

(6) 对数学一、三试卷概率论与数理统计部分和数学四试卷概率论部分的一些概念、考试内容和考试要求在文字表述上作了修改,使其更加规范和统一。

(7) 对数学一、二试卷的样卷进行了修订。

对数学一、二、三、四试卷中的考试内容和考试要求的表述更进一步明确、规范和统一,在考试内容部分只列出内容范围,而将有关内容的要求层次和应用这些内容可以解出的问题在考试要求部分列出。

2.2005年考研数学特点

2005考研数学试卷将进一步加大对考生掌握数学基础知识的准确性与全面性的考察力度,同时坚固不同知识点综合交叉运用性的基本能力。就难度而言,会维持2004年的水平。

2004年数学试题是近5年以来较容易也是最基本的一套试题。

2005年大纲维持2004年要求基本不变。只是进一步加强了对基础性知识点的重视与规范化要求。如:一元微分学中:增加了“接初等函数的概念准确的概念”,“会求平面曲线的切线方程与法线方程”,多元微分学强调了“了解隐函数存在定理,会求多元隐函数的偏导数”,线性代数强调“理解非齐次方程组解的结构及通解的概念”,“掌握用初等行变换求解线性方程组的方法”,等等。准确而全面的概念理解与过硬的基本计算能力,将是2005年考生取胜的关键。加强知识的基础性、系统综合性与交叉性的训练,努力提升对知识的洞察力,以不变应万变,排除误导,是我们的建议。

关于2005考研试题的特点与结构,有以下几点:

(1)试卷分值问题

从2003年开始,教育部考试中心对数学试卷的分数设定为150分,这反映了国家对人才的数学素质与能力的重视,但是数学试卷的题目容量并未增加,而是每一题目的赋分值均有增加,比如选择与填空题(共13个小题)由原来3分提为4分。对每一个考生来讲,在数学上下的功夫,其价值提高了。2005年数学试卷的分值维持不变。

(2)试卷结构问题

2005年数学试卷一、二、三、四结构相同,均为23题。其中选择与填空题约占40%(共14小题56分),其余为解答题。

试卷一:微积分约60%,代数约20%,概率统计约20%;

试卷二:微积分约80%(要求多元微积分学,到二重积分为止),

代数约20%(要求到特征值与特征向量为止);

试卷三:微积分约50%(不含曲线曲面积分与三重积分,以及场论),

代数约25%(要求到二次型为止,同试卷一),概率统计约25%;

试卷四:微积分约50%(不含曲线曲面积分与三重积分,以及场论),

代数约25%(要求到特征值与特征向量为止),概率论约25%(不含统计);

(3)2004阅卷基本情况

初步估计,北京地区平均70分左右,微积分,线性代数与概率统计题目相对都较基本,最低调档限为90分以上。其中以概率统计题目答卷情况最好,微积分与线性代数答卷得分较往年有提高。

(4)考生的普遍基本状况

普遍的基本状况是:全国现行的大学本科数学与英语的教学水准与国家考研的实际要求相差甚远。这一情况的原因不在于考生本身。

面对考研,数学考试的特点是全面考察学生对基础知识点理解的准,我们的建议是:加强对基础知识理解的准确性、全面性,完整性与系统性,提升对基本知识点交叉综合运用的能力。为确保这样的教学效果,清华考研辅导基础班的数学辅导课,一般要保持120-160学时,正是这样的基础性班教学,才保证了广大学员大幅度提升对数学知识的洞察力,以不变应万变,在考场上取得技压群雄的良好成绩。

3.关于对基础知识点理解的准确性、完整性与系统性

对基础知识点的理解,首先要作到准确性,准确性没有作到,一切都谈不上。有了准确性,才能进一步有全面性。对基础知识点理解的的准确与不准确,或不够准确,会极大的影响考试成绩。而对准确性与全面性的问题,正是大多数考生的不足之处,需要认真补课。

完全基础性题目一般占60分以上(满分150分),并且,基础性在综合题目中也占有重要的分量。所谓基础知识,包括初等函数的初等性质,构造导数定义的极限模式及其变形,极限存在的命题形式及命题属性(充分的?必要的?还是充要的?),极限运算法则,反函数与隐函数的概念与性质,线性微分方程解的概念,一阶线性微分方程解的公式,齐次与非齐次线性微分方程解的结构,矩阵的初等变换与秩的概念,向量组的线性相关与无关,向量组的秩与线性方程组解结构之间的关系,矩阵的行初等变换与求解非齐次线性方程组解的关系,概率的事件运算,五个古典概率的基本公式,分布率,分布密度与分布函数的性质及其相互之间关系,数字特征的定义与基本运算公式,简单随机样本及其数字特征,等等。

基础性知识的失误往往导致对一个综合题目的切入点错误,最后造成的是全局性错误。同时还应注意基本概念的背景和各个知识点的相互关系,不宜多作难题。对基本题目涉及的方法与技巧多做总结与分析,力争做到举一反三,以一当十,这样的训练会使你遇到个别难题时容易找到切入点与思路。

股票高等数学基础知识

高等数学包括哪些内容

1. 2005年数学考试大纲的修订说明与评述

(1) 基于工学、经济学、管理学门类各学科专业对硕士研究生入学所应具备的数学知识和能力的不同要求,数学统考试卷仍分为数学一、数学二、数学三和数学四。

(2) 数学一、二试卷高等数学部分,“函数、极限、连续”的考试要求的第4条增加“了解初等函数的概念”的要求。

原为“掌握基本初等函数的性质及其图形”。变为“掌握基本初等函数的性质及其图形,了解初等函数的概念”。

评述:进一步强调基础知识点。

数学一试卷高等数学部分,“多元函数微分学”的考试要求的第6条,数学二试卷高等数学部分,“多元函数微积分学”的考试要求的第3条,将原来的“会用隐函数的求志法则”改为“了解隐函数存在定理,会求多元隐函数的偏导数”。

评述:进一步强调基础知识点与概念理解的重要性。

(4) 数学三、四试卷高等数学部分,“函数、极限、连续”的考试要求的第3条,将“理解反函数、隐函数的概念”改为“了解反函数、隐函数的概念”,

原为“理解复合函数、反函数、隐函数和分段函数的概念”。变为“理解复合函数及分段函数的概念,了解反函数及隐函数的概念”。

评述:进一步强调基础知识点。

“一元函数微分学”的考试要求的第1条,增加“会求平面曲线的切线方程和法线方程”的要求。

原为“理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念)”。

变为“理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程。”

评述:进一步强调基础知识点,进一步提升对考生能力的要求。

数学三、四试卷线性代数部分,“线性方程组”的考试要求的第4条改为“4.理解非齐次线性方程组解的结构及通解的概念。5.掌握用初等行变换求解线性方程组的方法”。

原为“4.掌握理解非齐次线性方程组基础解系的求法,会用其特解及相应的导出组的基础解系表示非齐次线性方程组的通解”。变为以上的两条。

评述:进一步提升对考生能力的要求。

(6) 对数学一、三试卷概率论与数理统计部分和数学四试卷概率论部分的一些概念、考试内容和考试要求在文字表述上作了修改,使其更加规范和统一。

(7) 对数学一、二试卷的样卷进行了修订。

对数学一、二、三、四试卷中的考试内容和考试要求的表述更进一步明确、规范和统一,在考试内容部分只列出内容范围,而将有关内容的要求层次和应用这些内容可以解出的问题在考试要求部分列出。

2.2005年考研数学特点

2005考研数学试卷将进一步加大对考生掌握数学基础知识的准确性与全面性的考察力度,同时坚固不同知识点综合交叉运用性的基本能力。就难度而言,会维持2004年的水平。

2004年数学试题是近5年以来较容易也是最基本的一套试题。

2005年大纲维持2004年要求基本不变。只是进一步加强了对基础性知识点的重视与规范化要求。如:一元微分学中:增加了“接初等函数的概念准确的概念”,“会求平面曲线的切线方程与法线方程”,多元微分学强调了“了解隐函数存在定理,会求多元隐函数的偏导数”,线性代数强调“理解非齐次方程组解的结构及通解的概念”,“掌握用初等行变换求解线性方程组的方法”,等等。准确而全面的概念理解与过硬的基本计算能力,将是2005年考生取胜的关键。加强知识的基础性、系统综合性与交叉性的训练,努力提升对知识的洞察力,以不变应万变,排除误导,是我们的建议。

关于2005考研试题的特点与结构,有以下几点:

(1)试卷分值问题

从2003年开始,教育部考试中心对数学试卷的分数设定为150分,这反映了国家对人才的数学素质与能力的重视,但是数学试卷的题目容量并未增加,而是每一题目的赋分值均有增加,比如选择与填空题(共13个小题)由原来3分提为4分。对每一个考生来讲,在数学上下的功夫,其价值提高了。2005年数学试卷的分值维持不变。

(2)试卷结构问题

2005年数学试卷一、二、三、四结构相同,均为23题。其中选择与填空题约占40%(共14小题56分),其余为解答题。

试卷一:微积分约60%,代数约20%,概率统计约20%;

试卷二:微积分约80%(要求多元微积分学,到二重积分为止),

代数约20%(要求到特征值与特征向量为止);

试卷三:微积分约50%(不含曲线曲面积分与三重积分,以及场论),

代数约25%(要求到二次型为止,同试卷一),概率统计约25%;

试卷四:微积分约50%(不含曲线曲面积分与三重积分,以及场论),

代数约25%(要求到特征值与特征向量为止),概率论约25%(不含统计);

(3)2004阅卷基本情况

初步估计,北京地区平均70分左右,微积分,线性代数与概率统计题目相对都较基本,最低调档限为90分以上。其中以概率统计题目答卷情况最好,微积分与线性代数答卷得分较往年有提高。

(4)考生的普遍基本状况

普遍的基本状况是:全国现行的大学本科数学与英语的教学水准与国家考研的实际要求相差甚远。这一情况的原因不在于考生本身。

面对考研,数学考试的特点是全面考察学生对基础知识点理解的准,我们的建议是:加强对基础知识理解的准确性、全面性,完整性与系统性,提升对基本知识点交叉综合运用的能力。为确保这样的教学效果,清华考研辅导基础班的数学辅导课,一般要保持120-160学时,正是这样的基础性班教学,才保证了广大学员大幅度提升对数学知识的洞察力,以不变应万变,在考场上取得技压群雄的良好成绩。

3.关于对基础知识点理解的准确性、完整性与系统性

对基础知识点的理解,首先要作到准确性,准确性没有作到,一切都谈不上。有了准确性,才能进一步有全面性。对基础知识点理解的的准确与不准确,或不够准确,会极大的影响考试成绩。而对准确性与全面性的问题,正是大多数考生的不足之处,需要认真补课。

完全基础性题目一般占60分以上(满分150分),并且,基础性在综合题目中也占有重要的分量。所谓基础知识,包括初等函数的初等性质,构造导数定义的极限模式及其变形,极限存在的命题形式及命题属性(充分的?必要的?还是充要的?),极限运算法则,反函数与隐函数的概念与性质,线性微分方程解的概念,一阶线性微分方程解的公式,齐次与非齐次线性微分方程解的结构,矩阵的初等变换与秩的概念,向量组的线性相关与无关,向量组的秩与线性方程组解结构之间的关系,矩阵的行初等变换与求解非齐次线性方程组解的关系,概率的事件运算,五个古典概率的基本公式,分布率,分布密度与分布函数的性质及其相互之间关系,数字特征的定义与基本运算公式,简单随机样本及其数字特征,等等。

基础性知识的失误往往导致对一个综合题目的切入点错误,最后造成的是全局性错误。同时还应注意基本概念的背景和各个知识点的相互关系,不宜多作难题。对基本题目涉及的方法与技巧多做总结与分析,力争做到举一反三,以一当十,这样的训练会使你遇到个别难题时容易找到切入点与思路。数学与应用数学专业的主要课程有:分析学、代数学、几何学、概率论、物理学、数学模型/数学实验、计算机基础、数值方法、数学史等。 数学与应用数学专业的主要课程有:分析学、代数学、几何学、概率论、物理学、数学模型/数学实验、计算机基础、数值方法、数学史等。 一、 函数与极限分为

常量与变量

函数的简单性态

数列的极限

函数的极限

无穷大量与无穷小量

无穷小量的比较

函数连续性

连续函数的性质及初等函数函数连续性

二、导数与微分

导数的概念

函数的和、差求导法则

函数的积、商求导法则

复合函数求导法则

反函数求导法则

隐函数及其求导法则

函数的微分

三、导数的应用

微分中值定理

未定式问题

函数单调性的判定法

函数的极值及其求法

函数的最大、最小值及其应用

曲线的凹向与拐点

四、不定积分

不定积分的概念及性质

求不定积分的方法

几种特殊函数的积分举例

五、定积分及其应用

定积分的概念

微积分的积分公式

定积分的换元法与分部积分法

广义积分

六、空间解析几何

空间直角坐标系

方向余弦与方向数

平面与空间直线

曲面与空间曲线

八、多元函数的微分学

多元函数概念

二元函数极限及其连续性

多元复合函数的求导法

多元函数的极值

九、多元函数积分学

二重积分的概念及性质

二重积分的计算法

三重积分的概念及其计算法

十、常微分方程

微分方程的基本概念

可分离变量的微分方程及齐次方程

线性微分方程

可降阶的高阶方程

线性微分方程解的结构

二阶常系数齐次线性方程的解法

二阶常系数非齐次线性方程的解法

十一、无穷级数

无穷级数是研究有次序的可数无穷个数或者函数的和的收敛性及和的数值的方法,理论以数项级数为基础,数项级数有发散性和收敛性的区别。只有无穷级数收敛时有一个和;发散的无穷级数没有和。算术的加法可以对有限个数求和,但无法对无限个数求和,有些数列可以用无穷级数方法求和。 包括数项级数、函数项级数(又包括幂级数、Fourier级数;复变函数中的泰勒级数、Laurent(洛朗)级数)。

博客主人唯心底涂
男,单身,无聊上班族,闲着没事喜欢研究股票,无时无刻分享股票入门基础知识,资深技术宅。
  • 34685 文章总数
  • 3637176访问次数
  • 3073建站天数