为广大币圈朋友提供币圈基础入门专业知识!
当前位置首页 > 股票分析> 正文

怎么对股票进行聚类分析(股票聚类分析Python)

发布时间:2022-02-23-14:51:45 来源:卫信股票网 股票分析

R语言聚类分析是怎样的?

常见的8种。。。常见的系统聚类好像刚好有8种方法,single,complete,median,centroid,average,mcquitty,ward,和flexible-beta,hclust可以做前7种,最后一种不是很清楚。不知道你说的8种是不是指这个。其他聚类方法还有kmeans(动态聚类),fanny(模糊聚类)等,具体可以参考《统计建模与R软件》《应用多元统计分析

怎么对股票进行聚类分析

与聚类分析进行分类比较有何不同?5、利用主成分得分是否可以对样品

利用主成分得分是可以对样品进行分类的

想问下,聚类分析,判别分析,因子分析,主成分分析和对应分析各自的使用条件是什么?

聚类分析一般是用来描述变量或者样品之间相似性的方法,事先是不知道有多少中类别的。

判别分析是事先知道了有哪些类别,而且有相应的分类数据,那么可以通过已知的分析数据建立一个分类的规则,那么给出一个或多个未知类的数据就可以通过建立的规则对其进行分析,判别其到底是属于哪个类别的。因此

因子分析、主成分分析、对应分析与上面两种分析方法有很大的不同。

主成分分析是通过已给的变量或者样品找到少于其变量个数或者样品个数的几个公共因子,这些公共因子所能代表的含义能够最大限度的解释所有的变量或样品。其实可以理解为当我想分析一些变量时,这些变量的个数太多,分析起来有点复杂,那么可以通过主成分分析对变量的个数进行降维,通过找到的少数几个综合变量(公共因子)来分析的话会使问题变得简单、明了。

而因子分析其实相当于是主成分分析的逆过程,即用找到的公共因子来解释变量。不过寻找公共因子的方法有多种,不只是有主成分方法,还有主轴因子发、极大似然法等。不过可以通过了解主成分分析的过程来理解因子分析的过程。

对应分析其实就是分别对变量和样品做因子分析,通过一张二维图展现两个因子分析的结果而已,方便我们分析变量间、样品间或者变量和样品间的相关性。

上面说的是这几种不同分析的的用法,或者说是目的,那么如果要了解他们的使用条件的话,需要从他们的使用目的进行分析。

聚类分析一般比较适用于变量(样品)存在相关性的情况,如果所有变量(样品)均不相关的话,那么聚类的结果将会非常差。

判别分析适用于分类数据的分析,及存在某一个变量描述的是样品属于哪个类。

主成分分析、因子分析和对应分析对数据一般没有过分的要求,由于均是通过降维的方式来进行分析,所有都要求变量存在一定的相关性。

而对应分析最适用的数据是列联表数据,对于定距尺度和定比例尺度的数据也有一定的适用性,只需要将数据看做成频数即可。但是在做对应分析时,无论是列联表数据、定距尺度数据还是定比例尺度都需要将其数据转化成频率的形式才能分析。其实spss软件都是自动帮助使用者自动转化了。

受本人水品所限,了解的主要就这么多,如有差错的地方还望及时指正。谢谢。

怎么对股票进行聚类分析

聚类分析的算法

聚类分析是数据挖掘中的一个很活跃的研究领域,并提出了许多聚类算法。传统的聚类算法可以被分为五类:划分方法、层次方法、基于密度方法、基于网格方法和基于模型方法。

1 划分方法(PAM:PArtitioning method) 首先创建k个划分,k为要创建的划分个数;然后利用一个循环定位技术通过将对象从一个划分移到另一个划分来帮助改善划分质量。典型的划分方法包括:

k-means,k-medoids,CLARA(Clustering LARge Application),

CLARANS(Clustering Large Application based upon RANdomized Search).

2 层次方法(hierarchical method) 创建一个层次以分解给定的数据集。该方法可以分为自上而下(分解)和自下而上(合并)两种操作方式。为弥补分解与合并的不足,层次合

并经常要与其它聚类方法相结合,如循环定位。典型的这类方法包括:

BIRCH(Balanced Iterative Reducing and Clustering using Hierarchies) 方法,它首先利用树的结构对对象集进行划分;然后再利用其它聚类方法对这些聚类进行优化。

CURE(Clustering Using REprisentatives) 方法,它利用固定数目代表对象来表示相应聚类;然后对各聚类按照指定量(向聚类中心)进行收缩。

ROCK方法,它利用聚类间的连接进行聚类合并。

CHEMALOEN方法,它则是在层次聚类时构造动态模型。

3 基于密度的方法,根据密度完成对象的聚类。它根据对象周围的密度(如DBSCAN)不断增长聚类。典型的基于密度方法包括:

DBSCAN(Densit-based Spatial Clustering of Application with Noise):该算法通过不断生长足够高密度区域来进行聚类;它能从含有噪声的空间数据库中发现任意形状的聚类。此方法将一个聚类定义为一组“密度连接”的点集。

OPTICS(Ordering Points To Identify the Clustering Structure):并不明确产生一个聚类,而是为自动交互的聚类分析计算出一个增强聚类顺序。。

4 基于网格的方法,首先将对象空间划分为有限个单元以构成网格结构;然后利用网格结构完成聚类。

STING(STatistical INformation Grid) 就是一个利用网格单元保存的统计信息进行基于网格聚类的方法。

CLIQUE(Clustering In QUEst)和Wave-Cluster 则是一个将基于网格与基于密度相结合的方法。

5 基于模型的方法,它假设每个聚类的模型并发现适合相应模型的数据。典型的基于模型方法包括:

统计方法COBWEB:是一个常用的且简单的增量式概念聚类方法。它的输入对象是采用符号量(属性-值)对来加以描述的。采用分类树的形式来创建一个层次聚类。

CLASSIT是COBWEB的另一个版本.。它可以对连续取值属性进行增量式聚类。它为每个结点中的每个属性保存相应的连续正态分布(均值与方差);并利用一个改进的分类能力描述方法,即不象COBWEB那样计算离散属性(取值)和而是对连续属性求积分。但是CLASSIT方法也存在与COBWEB类似的问题。因此它们都不适合对大数据库进行聚类处理.

传统的聚类算法已经比较成功的解决了低维数据的聚类问题。但是由于实际应用中数据的复杂性,在处理许多问题时,现有的算法经常失效,特别是对于高维数据和大型数据的情况。因为传统聚类方法在高维数据集中进行聚类时,主要遇到两个问题。①高维数据集中存在大量无关的属性使得在所有维中存在簇的可能性几乎为零;②高维空间中数据较低维空间中数据分布要稀疏,其中数据间距离几乎相等是普遍现象,而传统聚类方法是基于距离进行聚类的,因此在高维空间中无法基于距离来构建簇。

高维聚类分析已成为聚类分析的一个重要研究方向。同时高维数据聚类也是聚类技术的难点。随着技术的进步使得数据收集变得越来越容易,导致数据库规模越来越大、复杂性越来越高,如各种类型的贸易交易数据、Web 文档、基因表达数据等,它们的维度(属性)通常可以达到成百上千维,甚至更高。但是,受“维度效应”的影响,许多在低维数据空间表现良好的聚类方法运用在高维空间上往往无法获得好的聚类效果。高维数据聚类分析是聚类分析中一个非常活跃的领域,同时它也是一个具有挑战性的工作。高维数据聚类分析在市场分析、信息安全、金融、娱乐、反恐等方面都有很广泛的应用。