跨境电子商务案例分析论文开题报告怎么?跨境电子商务案例分析论文开
跨境电子商务的,案例分析OK开题报告
行业现状分析怎么写-存在问题及发展前景分析开题报告怎么?我国证券市场的现状、存在问题
这是一篇模板,你可以看看的
数学建模 有一种学派 叫神经网络派 无论什么问题
一种神经网络建模方法。属于智能信息处理技术领域。基于结构风险最小化原则,结合合作协作进化算法,同时进行神经网络的网络结构和连接权值学习,最终得到网络结构和连接权值之间最优折衷,方法具体包括数据处理、网络学习和网络估计预测三个基本步骤。同时进行网络结构和连接权值的学习,较好地解决了传统神经网络学习中存在的结果与初始值相关、收敛速度慢、易陷于局部最小值、误差函数必须可导、过学习等实际问题,提高了网络的学习能力和泛化能力。可应用于心脏病智能诊断、工业领域中的故障诊断、软测量等,经济领域的股票价格预测、商品价格预测等假设输入的是5个参数,输出1个参数。
神经网络的节点结构为 5-n-1(n是中间层节点数,数目根据实验效果确定,可选5~10个)
关于输入延迟,不清楚意思。
是否可以做这样的数据处理:
假设t 时间的5个输入数据和t+1时间的1个输出数据对应,则以这一对数据作为训练样本,也不需要其理解神经网络中的延时处理机制。
训练函数写法:net=train(net,t 时间的输入数据,t+1时间的输入数据);
神经网络算法 实验报告 C++
算法数值实验
一、实验目的
Matlab
软件神经网络工具箱的使用;
神经网络的基本工作原理;
神经网络的基本应用
Matlab
程序设计的基本方法
二、实验内容
给定七个输入的单层神经元以及输入
,比较不同传递函数所得到的输出结
果.其中网络权值向量
[ 0 .
0 .
0 .
0 .
0 .
0 .
0 .
,网络输入
[ 1 .
0 .
1 .
0 .
0 .
1 .
训练一个隐层(含五个神经元)的单输出
网络,给出动态逼近过程和训练
好的权值和闻值.
设定精度要求,并利用输入和目标进行训练;
画出样本点示意图;
在同一个图上画出样本点示意图.// annbp.cpp: implementation of the cannbp class.
//
//////////////////////////////////////////////////////////////////////
#include "stdafx.h"
#include "annbp.h"
#include "math.h"
//////////////////////////////////////////////////////////////////////
// construction/destruction
//////////////////////////////////////////////////////////////////////
cannbp::cannbp()
eta1=0.3;
momentum1=0.3;
cannbp::~cannbp()
double cannbp::drnd()
return ((double) rand() / (double) bigrnd);
/*** 返回-1.0到1.0之间的双精度随机数 ***/
double cannbp::dpn1()
return (double) (rand())/(32767/2)-1;
/*** 作用函数,目前是s型函数 ***/
double cannbp::squash(double x)
return (1.0 / (1.0 + exp(-x)));
/*** 申请1维双精度实数数组 ***/
double* cannbp::alloc_1d_dbl(int n)
double *new1;
new1 = (double *) malloc ((unsigned) (n * sizeof (double)));
if (new1 == null) {
afxmessagebox("alloc_1d_dbl: couldn't allocate array of doubles\n");
return (null);
}
return (new1);
/*** 申请2维双精度实数数组 ***/
double** cannbp::alloc_2d_dbl(int m, int n)
int i;
double **new1;
new1 = (double **) malloc ((unsigned) (m * sizeof (double *)));
if (new1 == null) {
afxmessagebox("alloc_2d_dbl: couldn't allocate array of dbl ptrs\n");
return (null);
}
for (i = 0; i < m; i++) {
new1[i] = alloc_1d_dbl(n);
}
return (new1);
/*** 随机初始化权值 ***/
void cannbp::bpnn_randomize_weights(double **w, int m, int n)
int i, j;
for (i = 0; i <= m; i++) {
for (j = 0; j <= n; j++) {
w[i][j] = dpn1();
}
}
/*** 0初始化权值 ***/
void cannbp::bpnn_zero_weights(double **w, int m, int n)
int i, j;
for (i = 0; i <= m; i++) {
for (j = 0; j <= n; j++) {
w[i][j] = 0.0;
}
}
/*** 设置随机数种子 ***/
void cannbp::bpnn_initialize(int seed)
cstring msg,s;
msg="random number generator seed:";
s.format("%d",seed);
afxmessagebox(msg+s);
srand(seed);
/*** 创建bp网络 ***/
bpnn* cannbp::bpnn_internal_create(int n_in, int n_hidden, int n_out)
bpnn *newnet;
newnet = (bpnn *) malloc (sizeof (bpnn));
if (newnet == null) {
printf("bpnn_create: couldn't allocate neural network\n");
return (null);
}
newnet->input_n = n_in;
newnet->hidden_n = n_hidden;
newnet->output_n = n_out;
newnet->input_units = alloc_1d_dbl(n_in + 1);
newnet->hidden_units = alloc_1d_dbl(n_hidden + 1);
newnet->output_units = alloc_1d_dbl(n_out + 1);
newnet->hidden_delta = alloc_1d_dbl(n_hidden + 1);
newnet->output_delta = alloc_1d_dbl(n_out + 1);
newnet->target = alloc_1d_dbl(n_out + 1);
newnet->input_weights = alloc_2d_dbl(n_in + 1, n_hidden + 1);
newnet->hidden_weights = alloc_2d_dbl(n_hidden + 1, n_out + 1);
newnet->input_prev_weights = alloc_2d_dbl(n_in + 1, n_hidden + 1);
newnet->hidden_prev_weights = alloc_2d_dbl(n_hidden + 1, n_out + 1);
return (newnet);
/* 释放bp网络所占地内存空间 */
void cannbp::bpnn_free(bpnn *net)
int n1, n2, i;
n1 = net->input_n;
n2 = net->hidden_n;
free((char *) net->input_units);
free((char *) net->hidden_units);
free((char *) net->output_units);
free((char *) net->hidden_delta);
free((char *) net->output_delta);
free((char *) net->target);
for (i = 0; i <= n1; i++) {
free((char *) net->input_weights[i]);
free((char *) net->input_prev_weights[i]);
}
free((char *) net->input_weights);
free((char *) net->input_prev_weights);
for (i = 0; i <= n2; i++) {
free((char *) net->hidden_weights[i]);
free((char *) net->hidden_prev_weights[i]);
}
free((char *) net->hidden_weights);
free((char *) net->hidden_prev_weights);
free((char *) net);
/*** 创建一个bp网络,并初始化权值***/
bpnn* cannbp::bpnn_create(int n_in, int n_hidden, int n_out)
bpnn *newnet;
newnet = bpnn_internal_create(n_in, n_hidden, n_out);
#ifdef initzero
bpnn_zero_weights(newnet->input_weights, n_in, n_hidden);
#else
bpnn_randomize_weights(newnet->input_weights, n_in, n_hidden);
#endif
bpnn_randomize_weights(newnet->hidden_weights, n_hidden, n_out);
bpnn_zero_weights(newnet->input_prev_weights, n_in, n_hidden);
bpnn_zero_weights(newnet->hidden_prev_weights, n_hidden, n_out);
return (newnet);
void cannbp::bpnn_layerforward(double *l1, double *l2, double **conn, int n1, int n2)
double sum;
int j, k;
/*** 设置阈值 ***/
l1[0] = 1.0;
/*** 对于第二层的每个神经元 ***/
for (j = 1; j <= n2; j++) {
/*** 计算输入的加权总和 ***/
sum = 0.0;
for (k = 0; k <= n1; k++) {
sum += conn[k][j] * l1[k];
}
l2[j] = squash(sum);
}
/* 输出误差 */
void cannbp::bpnn_output_error(double *delta, double *target, double *output, int nj, double *err)
int j;
double o, t, errsum;
errsum = 0.0;
for (j = 1; j <= nj; j++) {
o = output[j];
t = target[j];
delta[j] = o * (1.0 - o) * (t - o);
errsum += abs(delta[j]);
}
*err = errsum;
/* 隐含层误差 */
void cannbp::bpnn_hidden_error(double *delta_h, int nh, double *delta_o, int no, double **who, double *hidden, double *err)
int j, k;
double h, sum, errsum;
errsum = 0.0;
for (j = 1; j <= nh; j++) {
h = hidden[j];
sum = 0.0;
for (k = 1; k <= no; k++) {
sum += delta_o[k] * who[j][k];
}
delta_h[j] = h * (1.0 - h) * sum;
errsum += abs(delta_h[j]);
}
*err = errsum;
/* 调整权值 */
void cannbp::bpnn_adjust_weights(double *delta, int ndelta, double *ly, int nly, double **w, double **oldw, double eta, double momentum)
double new_dw;
int k, j;
ly[0] = 1.0;
for (j = 1; j <= ndelta; j++) {
for (k = 0; k <= nly; k++) {
new_dw = ((eta * delta[j] * ly[k]) + (momentum * oldw[k][j]));
w[k][j] += new_dw;
oldw[k][j] = new_dw;
}
}
/* 进行前向运算 */
void cannbp::bpnn_feedforward(bpnn *net)
int in, hid, out;
in = net->input_n;
hid = net->hidden_n;
out = net->output_n;
/*** feed forward input activations. ***/
bpnn_layerforward(net->input_units, net->hidden_units,
net->input_weights, in, hid);
bpnn_layerforward(net->hidden_units, net->output_units,
net->hidden_weights, hid, out);
/* 训练bp网络 */
void cannbp::bpnn_train(bpnn *net, double eta, double momentum, double *eo, double *eh)
int in, hid, out;
double out_err, hid_err;
in = net->input_n;
hid = net->hidden_n;
out = net->output_n;
/*** 前向输入激活 ***/
bpnn_layerforward(net->input_units, net->hidden_units,
net->input_weights, in, hid);
bpnn_layerforward(net->hidden_units, net->output_units,
net->hidden_weights, hid, out);
/*** 计算隐含层和输出层误差 ***/
bpnn_output_error(net->output_delta, net->target, net->output_units,
out, &out_err);
bpnn_hidden_error(net->hidden_delta, hid, net->output_delta, out,
net->hidden_weights, net->hidden_units, &hid_err);
*eo = out_err;
*eh = hid_err;
/*** 调整输入层和隐含层权值 ***/
bpnn_adjust_weights(net->output_delta, out, net->hidden_units, hid,
net->hidden_weights, net->hidden_prev_weights, eta, momentum);
bpnn_adjust_weights(net->hidden_delta, hid, net->input_units, in,
net->input_weights, net->input_prev_weights, eta, momentum);
/* 保存bp网络 */
void cannbp::bpnn_save(bpnn *net, char *filename)
cfile file;
char *mem;
int n1, n2, n3, i, j, memcnt;
double dvalue, **w;
n1 = net->input_n; n2 = net->hidden_n; n3 = net->output_n;
printf("saving %dx%dx%d network to '%s'\n", n1, n2, n3, filename);
try
{
file.open(filename,cfile::modewrite|cfile::modecreate|cfile::modenotruncate);
}
catch(cfileexception* e)
{
e->reporterror();
e->delete();
}
file.write(&n1,sizeof(int));
file.write(&n2,sizeof(int));
file.write(&n3,sizeof(int));
memcnt = 0;
w = net->input_weights;
mem = (char *) malloc ((unsigned) ((n1+1) * (n2+1) * sizeof(double)));
// mem = (char *) malloc (((n1+1) * (n2+1) * sizeof(double)));
for (i = 0; i <= n1; i++) {
for (j = 0; j <= n2; j++) {
dvalue = w[i][j];
//fastcopy(&mem[memcnt], &dvalue, sizeof(double));
fastcopy(&mem[memcnt], &dvalue, sizeof(double));
memcnt += sizeof(double);
}
}
file.write(mem,sizeof(double)*(n1+1)*(n2+1));
free(mem);
memcnt = 0;
w = net->hidden_weights;
mem = (char *) malloc ((unsigned) ((n2+1) * (n3+1) * sizeof(double)));
// mem = (char *) malloc (((n2+1) * (n3+1) * sizeof(double)));
for (i = 0; i <= n2; i++) {
for (j = 0; j <= n3; j++) {
dvalue = w[i][j];
fastcopy(&mem[memcnt], &dvalue, sizeof(double));
//fastcopy(&mem[memcnt], &dvalue, sizeof(double));
memcnt += sizeof(double);
}
}
file.write(mem, (n2+1) * (n3+1) * sizeof(double));
// free(mem);
file.close();
return;
/* 从文件中读取bp网络 */
bpnn* cannbp::bpnn_read(char *filename)
char *mem;
bpnn *new1;
int n1, n2, n3, i, j, memcnt;
cfile file;
try
{
file.open(filename,cfile::moderead|cfile::modecreate|cfile::modenotruncate);
}
catch(cfileexception* e)
{
e->reporterror();
e->delete();
}
// printf("reading '%s'\n", filename);// fflush(stdout);
file.read(&n1, sizeof(int));
file.read(&n2, sizeof(int));
file.read(&n3, sizeof(int));
new1 = bpnn_internal_create(n1, n2, n3);
// printf("'%s' contains a %dx%dx%d network\n", filename, n1, n2, n3);
// printf("reading input weights..."); // fflush(stdout);
memcnt = 0;
mem = (char *) malloc (((n1+1) * (n2+1) * sizeof(double)));
file.read(mem, ((n1+1)*(n2+1))*sizeof(double));
for (i = 0; i <= n1; i++) {
for (j = 0; j <= n2; j++) {
//fastcopy(&(new1->input_weights[i][j]), &mem[memcnt], sizeof(double));
fastcopy(&(new1->input_weights[i][j]), &mem[memcnt], sizeof(double));
memcnt += sizeof(double);
}
}
free(mem);
// printf("done\nreading hidden weights..."); //fflush(stdout);
memcnt = 0;
mem = (char *) malloc (((n2+1) * (n3+1) * sizeof(double)));
file.read(mem, (n2+1) * (n3+1) * sizeof(double));
for (i = 0; i <= n2; i++) {
for (j = 0; j <= n3; j++) {
//fastcopy(&(new1->hidden_weights[i][j]), &mem[memcnt], sizeof(double));
fastcopy(&(new1->hidden_weights[i][j]), &mem[memcnt], sizeof(double));
memcnt += sizeof(double);
}
}
free(mem);
file.close();
printf("done\n"); //fflush(stdout);
bpnn_zero_weights(new1->input_prev_weights, n1, n2);
bpnn_zero_weights(new1->hidden_prev_weights, n2, n3);
return (new1);
void cannbp::createbp(int n_in, int n_hidden, int n_out)
net=bpnn_create(n_in,n_hidden,n_out);
void cannbp::freebp()
bpnn_free(net);
void cannbp::train(double *input_unit,int input_num, double *target,int target_num, double *eo, double *eh)
for(int i=1;i<=input_num;i++)
{
net->input_units[i]=input_unit[i-1];
}
for(int j=1;j<=target_num;j++)
{
net->target[j]=target[j-1];
}
bpnn_train(net,eta1,momentum1,eo,eh);
void cannbp::identify(double *input_unit,int input_num,double *target,int target_num)
for(int i=1;i<=input_num;i++)
{
net->input_units[i]=input_unit[i-1];
}
bpnn_feedforward(net);
for(int j=1;j<=target_num;j++)
{
target[j-1]=net->output_units[j];
}
void cannbp::save(char *filename)
bpnn_save(net,filename);
void cannbp::read(char *filename)
net=bpnn_read(filename);
void cannbp::setbparm(double eta, double momentum)
eta1=eta;
momentum1=momentum;
void cannbp::initialize(int seed)
bpnn_initialize(seed);
- 上一篇: 走出技术分析的股票(股票技术分析网站)
- 下一篇: 京东方股票讨论分析(京东方a股票走势分析文字分析)